

An Investigation of the North Atlantic Oscillation's Impact on Extreme Snowfall Events on Mount Washington

Background Information

North Atlantic Oscillation diagram provided by NOAA's climate.gov NAO website: https://www.climate.gov/news

What is the NAO?

The North Atlantic Oscillation (NAO) is an interannual, global teleconnection split into two phases: positive and negative.

- The positive phase correlates with stronger high and low pressure centers in the Atlantic.
- The negative phase correlates with weaker centers.

Research Objectives

- Identify if there is a statistically significant difference in average snowfall between the most positive and most negative NAO days
- Analyze whether the NAO influences the distribution of extreme snowfall

- Three main methods used in this study:
 - Composite Resampling

Extreme Value Modeling

Influence of the Covariant

Composite Resampling

- Of the initial snowfall data from 1979-2023, the top 3% of events were filtered out of the data, resulting in a total of 733 snowfall events that received greater than or equal to 6.3 inches of snowfall
- Data filtered from October to April
- The NAO indices for the three days prior, three days after, and the day of the snowfall event were compiled to form a 7-day average of the NAO indices
- The top 50 most positive and most negative values of the NAO indices were selected
- Mean snowfall was calculated for each of the positive and negative NAO groups
- A Monte Carlo analysis was then completed by randomly sampling 100 snowfall events without replacement and calculating the difference in the group's means
- Analysis repeated 10,000 times

Extreme Value Modeling

- The same filtered top 3% snowfall events and corresponding NAO indices were used (October to April)
- Categorized the data into three different NAO phases:
 - Strong Negative (NAO ≤ -1.0)
 - Neutral (-1.0 < NAO < 1.0)
 - Strong Positive (NAO ≥ 1.0)
- For each NAO phase, a filtered generalized extreme value (GEV)
 model was used to create a distribution
- Parameters of analysis:
 - Location (shows where the bulk of the data is located),
 - **Scale** (controls the spread of the data (wider or narrower distribution),
 - **Shape** (determines the tail of the distribution and helps understand rare events)

Influence of the Covariant

- An initial climatology was created to show snowfall data and the NAO indices correlations
- Mean sea level pressure maps were also created using the ECMWF's ERA5 reanalysis data to visually compare the effect of a positive and negative NAO phase on the Atlantic Ocean

Results and Conclusions

Monte Carlo Results:

- While negative NAO events do appear to produce more snow on average, the difference is not statistically robust.
- Based on mean values alone, there is no strong evidence that NAO phase controls the average snowfall during extreme events.

Results and Conclusions

GEV Analysis Results:

- The location is highest when NAO is strongly negative, which means there were more extreme snowfall events during the negative NAO phase.
- The **scale** is also larger when there is a negative NAO phase recorded, which means there is greater variability in extreme snowfall.
- The shape is less negative for the negative NAO, which indicates there is a heavier upper tail and more extreme maximum snowfall events possible.

